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Accessing the dynamics of large many-particle systems using the stochastic series expansion
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The stochastic series expansion~SSE! method is a quantum Monte Carlo~QMC! technique working directly
in the imaginary time continuum and thus avoiding ‘‘Trotter discretization’’ errors. Using a nonlocal ‘‘operator-
loop update,’’ it allows one to treat large quantum mechanical systems of many thousand sites. In this paper we
first give a comprehensive review on SSE and present benchmark calculations of SSE scaling behavior with
system size and inverse temperature, and compare it to the loop algorithm, whose scaling is known to be one
of the best of all QMC methods. Finally we introduce an efficient algorithm to measure Green’s functions and
thus dynamical properties within SSE.
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I. SSE TECHNIQUE

Since their first formulation in the early 1980s@1,2#,
quantum Monte Carlo~QMC! methods have become one
the most powerful numerical simulation techniques and to
in many-body physics. The first QMC algorithms were bas
on a discretization in imaginary time~‘‘Trotter decomposi-
tion’’ !, and used purely local update steps to sample the
tem’s statistically relevant states. These methods requi
delicate extrapolation to zero discretization in order to
duce systematic errors. Furthermore, the purely local upd
often prove incapable of traversing accessible states in
efficient way: autocorrelation times grow rapidly with in
creasing system size.

A more recent class of QMC algorithms, the so-call
‘‘loop algorithms’’ @3–10# uses nonlocal cluster or loop up
date schemes, thus reducing autocorrelation times by se
orders of magnitude in some cases. Unfortunately, it is o
highly nontrivial to construct a loop algorithm for a ne
Hamiltonian, and some important interactions cannot be
corporated into the loop scheme. These interactions hav
be added asa posteriori acceptance probabilities after th
construction of the loop, which can seriously decrease o
all efficiency of the simulation. Some loop algorithms al
suffer from ‘‘freezing’’ @3,11# when the probability is high
that a certain type of cluster occupies almost the whole s
tem.

These insufficiencies can be overcome using the ‘‘s
chastic series expansion’’~SSE! approach together with a
loop-type updating scheme~see Ref.@12# and earlier works
referenced therein!. ~i! SSE is~almost! as efficient as loop
algorithms on large systems,~ii ! it is a numerically exact
method without any discretization error; and~iii ! it is as easy
to construct and general in applicability as world-line me
ods.

Following Sandvik@12–14# we briefly outline the basic
ideas of SSE now. The central quantity to be sampled i
QMC simulation is the partition function

Z5Tr~e2bĤ!, ~1!
1063-651X/2001/64~6!/066701~10!/$20.00 64 0667
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whereĤ is the system’s Hamiltonian andb51/T the inverse
temperature. Standard QMC techniques@15# split up the ex-
ponential into a product of many ‘‘imaginary time slices

e2DtĤ, and truncate the Taylor expansion of this express
after a certain order inDt, thereby introducing a discretiza
tion error of orderDtn. In SSE, however, one chooses
convenient Hilbert base$ua&% ~for example theSz eigenbase
$ua&%5$uS1

z ,S2
z ,...,SN

z &%! and expandsZ into a power series

Z5(
a

(
n50

`
~2b!n

n!
^auĤnua&. ~2!

The statistically relevant exponents of this power series
centered around

^n&}Nsb, ~3!

whereNs is the number of sites~or orbitals! in the system.
@This follows from Eq.~11! and from^E&}Ns#. We can thus
truncate the infinite sum overn at a finite cutoff lengthL
}Nsb without introducing any systematic error for practic
computations. The best value forL can be determined an
adjusted during an initial thermalization phase of the QM
simulation: beginning with a relatively small value ofL, one
can start the QMC update process, stop it whenever the
off L is exceeded, and continue withL increased by 10–
20 %.

Now let Ĥ be composed of a certain number of eleme
tary interactions involving one site or two~such as on-site
potentials, nearest neighbor hopping, etc.!. In order to obtain
a uniform notation we combine those interactions affect
only one site to new ‘‘bond’’ interactions.„One can, for ex-
ample, take two chemical potential termsm•n̂ ~site 1! and
m•n̂ ~site 2! and form the bond term 1/Cm @ n̂(site 1)
1n̂(site 2)# with the constantC assuring that the sum ove
all new bond terms equals the sum over all initial on-s
terms.… We thus assume in the following thatĤ is a finite
sum of ‘‘bond’’ termsĤb , and that the operator stringsĤn in
Eq. ~2! can be split into terms of the form
©2001 The American Physical Society01-1
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)
i 51

n

Ĥbi

~ai ! , ~4!

wherebi labels the bond on which the elementary interact
term operates andai the operator type~e.g., density-density
interaction or hopping!. By introducing ‘‘empty’’ unit opera-
torsĤ (0)5 id, one can artificially grow all operator strings t
lengthL and obtain@14#

Z5(
a

(
$SL%

bn~L2n!!

L! K aU)
i 50

L

~2Ĥbi

~ai !!UaL . ~5!

Here $SL% denotes the set of all concatenations ofL bond
operatorsĤb

(a) and n is the number of nonunit operators
SL .

If we want to sample (a,SL) according to their relative
weights with a Monte Carlo procedure we have to make s
that the matrix element of each bond operator is zero
negative, since in order to fulfill a detailed balance w
choose the acceptance probabilityp of a bond interaction to
be proportional to its negative matrix element. However, t
requires that all matrix elements be nonpositive. Doe
simple redefinition of the zero of energy help? For diago
operators we can indeed add the same negative constanC to
each of them without changing the system’s properties,
thus make all matrix elements negative or zero. Unfor
nately, for nondiagonal terms an equally simple remedy d
not exist. However, if one can show that such a nondiago
operator must appear pairwise for the matrix element to
nonzero, its matrix element can be multiplied by21 without
changing the physics of the system.~This corresponds to a
gauge transformation on all lattice sites with odd parity.! On
nonfrustrated lattices this trick is widely applicable, whi
considerably increases the set of Hamiltonians suitable
SSE. If there are valid world-line configurations carrying
odd number of nondiagonal vertices with positive mat
elements—which is typical for Hamiltonians and lattic
with frustrations—only the conventional approach of deal
with the sign problem helps@2,16,17#: one simulates a new
system with the acceptance probabilityp85upu, and obtains
the estimate of a physical quantityQ in the form

^Q&5
^Q sgnp&

^sgnp&
.

Unfortunately,^sgnp& tends to zero exponentially with in
creasing system sizeNs and inverse temperatureb, so that
the computation time needed to achieve a certain accu
exponentially increases withNsb and the practically acces
sible range of system sizes and temperatures is rather lim

II. LOOP UPDATES

Having outlined the basic idea of SSE, we review t
nonlocal updating updating scheme proposed by San
@12#. In the following figures we illustrate the scheme b
means of a simple physical model: a system of two types
06670
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hard-core bosons on a six-site chain with periodic bound
conditions and Hamiltonian

H52t (
a51,2

(
i

P@aa,i
† aa,i 111H.c.#P1 (

a51,2
ma(

i
na,i

1 (
a51,2

ha(
i

P@aa,i
† aa,i 11

† 1H.c.#P, ~6!

with

P5(
i

~12n1,in2,i !. ~7!

The creation operatoraa,i
† creates a hardcore boson of typ

a51 or 2 on sitei. The first term~t! is a nearest neighbo
hopping term, the second term (ma) a chemical potential,
and the third term (ha) shows pair creation and annihilation
The projection operatorP implements hard core constrain
between the two types of bosons. In the world-li
representation—in which the horizontal axis represents
spatial dimension and the vertical axis the propagation le
l 51...L—we symbolize type-1 bosons by single solid line
type-2 bosons by double lines, and empty sites by do
lines ~see Fig. 1!.

Sandvik separated the set of all bond operators into th
classes: empty operatorsĤ (0), diagonal operatorsĤ (d), and
nondiagonal operatorsĤ (nd). The QMC process starts with
an arbitrarily chosen initial stateua& and an empty operato

FIG. 1. World-line representation of an arbitrarily chosen st
state for a physical system with three allowed occupations per
empty ~dashed line!, particle 1 ~solid line!, or particle 2~double
line!. The initial cutoff lengthL has been set toL59, and the initial
bond operator string consists only of ‘‘empty’’ operators.
1-2
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ACCESSING THE DYNAMICS OF LARGE MANY- . . . PHYSICAL REVIEW E 64 066701
string: in Fig. 1, for example, three sites are occupied
type-1 bosons, two sites are empty, and site 2 is occupie
a type-2 particle. Now two different update steps are p
formed in alternating order: a diagonal update exchang
empty and diagonal bond operators and an operator
update transforming and exchanging diagonal and nondia
nal operators.

In the diagonal update step the operator string positi
l 51...L are traversed in ascending order. If the current bo
operator is a nondiagonal one it is left unchanged; if it is
empty or diagonal operator it is replaced by a diagonal
empty one with a certain probability satisfying detailed b
ance~i.e., an operator with lower energy is more likely to b
maintained or inserted than an operator with higher ene!
~Fig. 2!.

Following Sandvik@12#, we use the notation

ua~ l !&5)
i 51

l

Ĥbi

~ai !ua& ~8!

for the state obtained by acting onua& with the first l bond
operators anduab( l )& for the restriction ofua( l )& to the bond
b. Let M be the total number of interacting bonds on t
lattice. Then the detailed balance conditions for the diago
update read

P~Ĥ ~0!
~ l !→Ĥb

~d!
~ l !!5minS 1,

Mb^ab~ l !uĤb
~d!uab~ l !&

L2n
D ,

P~Ĥb
~d!

~ l !→Ĥ ~0!
~ l !!5minS 1,

L2n11

Mb^ab~ l !uĤb
~d!uab~ l !&

D .

~9!

FIG. 2. In the diagonal update step a certain number of em
bond operators is replaced by diagonal ones~and vice versa!. In this
example seven of the initial nine identity operators have been
placed.
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Nondiagonal bond operators cannot simply be inser
into the world-line configuration as diagonal operators c
their insertion and modification requires local changes of
world-line occupations. Earlier we discussed that conc
enated local changes along a closed path~or loop! through
the network of world-lines and interaction vertices are mu
more efficient than independent purely local changes. Sa
vik proposed the following method to construct such a loo
a certain world line and a propagation levell on it is chosen
arbitrarily; at the chosen point one disturbs the world line
a local change—for example, the creation or annihilation
a particle. Then one chooses a direction~up or down in
propagation direction! and starts moving the disturbation i
this direction~Fig. 3!. The aim is to move this disturbatio
~we will call it ‘‘loop head’’ in the following! through the
network of world lines and interaction vertices until the in
tial discontinuity is reached again and healed up.

Whenever the loop head reaches an interaction vertex
must decide how to go on; in the situation shown in Fig.
the ‘‘bounce’’ path is always possible since it results in
unchanged vertex. The ‘‘straight’’ path results in a diagon
vertex, and the path is possible if the matrix element of t
vertex is nonzero. The ‘‘turn’’ path is only allowed if th
Hamiltonian contains nearest neighbor hopping terms
particle type 2, while the ‘‘jump’’ path is forbidden unless th
Hamiltonian also allows for pair creation of particle type
The choice among the allowed paths must again satisfy
tailed balance.

In our model—in which both pair creation and hoppin
are allowed—we might end up with the series turn, jum
turn, turn of path choices, after which the starting point
regained and the world-line discontinuity healed up~Fig. 4!.
The overall result of this loop is that we have replaced fo
diagonal interactions by four nondiagonal interactio
~marked ‘‘n.d.’’! in Fig. 4.

ty

e-

FIG. 3. In the operator loop update step a local change is
serted on a world line and then moved through the world lines
vertices. At each vertex a new direction is chosen such that
probability of a path is proportional to the negative energy of
resulting interaction vertex~detailed balance!.
1-3
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ANSGAR DORNEICH AND MATTHIAS TROYER PHYSICAL REVIEW E64 066701
Sandvik’s method implicitly assumes that running with
world-line change into an interaction vertex always requi
choosing an outgoing leg and a change on it and continu
the loop. But what if the encircled vertex in Fig. 3 with thre
empty legs and one leg occupied by particle 2 is also a v
vertex? Then we have to add a fifth possibility to the list
allowed path choices: ‘‘stop here.’’ If this last alternative
chosen the loop has reached a dead end. In this case our
code terminates the loop here, goes back to the starting p
and moves in the opposite direction until either another d
end is encounterd or the starting point is reached again
the initial discontinuity is healed up.

From Fig. 3 one can see that when choosing a p
through the current vertex there is always the possibility
undo the current change on the incoming leg of the ver
and to ‘‘bounce’’ backward on the same leg. This pa
choice is normally not very helpful since it means one s
backward in the construction of the current loop. For
nately, all bounce paths can be suppressed without viola
detailed balance if on each bond all nonzero matrix eleme
are equal, or can be made equal after a suitable energy
of the diagonal vertices. As an additional benefit, without
bounce path the algorithm becomes equivalent to the l
algorithm. For each vertex a path can be chosen accordin
a detailed balance, after which the loop construction
comes deterministic. All the Heisenberg models studied
Sec. IV are examples for this class of ‘‘optimizable’’ phys
cal systems.

A further improvement of the update scheme is poss
in the limit of high temperatures, i.e.,b→0. Equation~3!
tells us that the average number of~nonempty! vertices is
rather small in this situation, and a large part of all wo
lines is not connected to any vertex at all. The loop upd
will not be very efficient here, since it essentially needs
sufficient number of vertices interconnecting the world-lin

FIG. 4. The loop update close if the initial insertion point
reached again and the inserted world-line discontinuity thus
moved.
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For this reason our SSE code additionally performs a
called ‘‘free world-line update’’ on each world line carryin
no vertex at all. In this update the occupation of the en
world line is changed to a randomly selected new occu
tion.

We have stressed several times that all local path cho
satisfy a detailed balance. What remains to be shown is
the updating mechanism is ergodic in the grand canon
ensemble, i.e., that all bond operator stringsSL and all states
ua& can be reached. In order to demonstrate this we rem
the reader that loops crossing the boundary between the
and last propagation levelsl modify the initial stateua& for
the next update cycle. Therefore, the loops sample not o
SL but alsoua&, and starting from a completely empty syste
any allowed configuration can be generated by a serie
loops traversing one entire world-line each.

Numerical tests of the loop-update mechanism descri
above show that, for large system sizes and if there are
ementary interactions with very different energy scales,
loop construction sometimes gets stuck and the loop h
does not find its way back to the starting point even af
millions of steps. In order to avoid this, trapping loops th
exceed a critical length are aborted and the original stat
the vertices is restored. This causes no systematic error
measurements done between loop updates as detailed
ance is not violated. The measurements of Green’s funct
G(r ), however, which are performed ‘‘on the run’’ durin
loop construction~see Sec. V!, are biased if large loops ar
thrown away. Since large loops are more likely to reach
gions of the systems far away from the starting point th
short loops, the values ofG(r ) for large distancesr are sys-
tematically underestimated if a considerable amount of la
loops is aborted. Hence the total number of aborted loops
to be checked before one can trust in the recorded Gre
functions.

III. MEASUREMENTS

Efficient estimators for many static observables within t
SSE mechanism were derived by Sandviket al. @18#.

~i! All observablesĤ (a) appearing as elementary intera
tions in the system’s Hamiltonian can be measured very e
ily by counting the corresponding interaction vertices in t
bond operator stringSL : if SL contains on averagêN(a)&
such vertices, one obtains

^Ĥ ~a!&52
1

b
^N~a!&. ~10!

~ii ! Summing over all elementary termsĤ (a) gives an es-
timator for the internal energyE

E52
1

b
^n&, ~11!

wheren is the number of nonempty interaction vertices
SL . ~This equation can be derived very easily from^E&
5(]/]b)ln Z.!

-

1-4
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~iii ! For the heat capacityCV we additionally have to
measure the fluctuations ofn:

CV5^n2&2^n&22^n&. ~12!

~iv! Equal time correlations of two diagonal operatorsD̂1

and D̂2 can be measured via

^D̂1D̂2&5K 1

n11 (
l 50

n

d2@ l #d1@ l #L , ~13!

wheredi@ l #5^a( l )uD̂ i ua( l )&.
Are there equally efficient estimators for time-depend

observables? In SSE the propagation indexl describes the
evolution of an initial state when a series of element
terms of the Hamiltonian is acting on it; thusl plays a role
analogous to imaginary time in a standard path integ
More detailed calculations@13# showed that an imaginar
time separationt corresponds to a binomial distribution o
propagation distancesD l ; the time-dependent correlatio

^D̂2(t)D̂1(0)&, for example, is related to the correlator

C12~D l !5
1

n11 (
l 50

n

d2@ l 1D l #d1@ l # ~14!

via

^D̂2~t!D̂1~0!&5K (
D l 50

n S n
D l D S t

b D D l S 12
t

b D n2D l

C12~D l !L .

~15!

Instead of working in a representation with varyingn a fixed
string sizeL can be chosen, as the identity vertices are u
formly distributed and do not influence the mapping fro
index to imaginary time.

The corresponding generalized susceptibilities can be
culated straight forwardly by integrating^D̂2(t)D̂1(0)& over
t,

x125E
0

b

^D̂2~t!D̂1~0!&dt, ~16!

which gives@13#

x125K b

n~n11! S (
l 50

n21

d2@ l # D S (
l 50

n21

d1@ l # D
1

b

~n11!2 (
l 50

n

d2@ l #d1@ l #L . ~17!

IV. SCALING BEHAVIOR

One decisive criterion for the performance of a QM
simulation technique is the behavior of computation timeC
as a function of system sizeNs or inverse temperatureb. To
facilitate a hardware-independent measurement ofC and a
comparison to other QMC techniques, we defineC as the
number of elementary update operations needed to trans
06670
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a given stateua (n)& into an new stateua (n11)& in such a way
that the mean autocorrelation timet is equal to 1. In SSE the
number of elementary update operations is the numbe
diagonal vertices tested for replacement plus the numbe
vertices traversed during the loop update. In the followi
we compare SSE to the loop algorithm, which is known
show an excellent scaling behavior for many benchm
problems. As test models we choose isotropic antiferrom
netic Heisenberg models in one, two, and three dimens
with up to 4096 sites andb up to 64 in a vanishing or finite
external magnetic field.

Following Ref.@19# we described the scaling behavior
the two algorithms by means of the dynamical exponenz
defined from

tC}b l Dl z. ~18!

Here tC is the computational effort~i.e., the number of el-
ementary update steps! needed to achieve a mean autocor
lation time of t51 for the measurements of the studie
quantity;D is the spatial dimension of the simulated syste
and l 5DANs its length in each dimension. From Table I w
see that both simulation techniques show an approxima
equal performance and an very good scaling behavior: s
the ratio Ct/(bNs) is approximately constant we obtainz
'0 in both cases.

Next we enlarge the square lattice into the third spa
dimension and examine a bilayer quantum Heisenberg a
ferromagnet at the quantum critical point separating the s
gap phase from the magnetically ordered one@20#. Our aim
is to measure the scaling behavior and dynamical expon
exactly at this quantum critical point. This point is of pa
ticular interest since the immediate neighborhood of a ph
transition often leads to the so-called ‘‘critical slowin
down’’ of QMC simulations, i.e., exploding autocorrelatio
times and thus a dramatic decrease of efficiency of the Q
update process.

The results in Table II show that the scaling behavior
both algorithms is still almost linear inbNs . The scaling for

TABLE I. Two-dimensional antiferromagnetic Heisenbe
model at a vanishing magnetic fieldh50: calculation of the uni-
form magnetic susceptibilitŷ x&5@]^M &/]h#uh50 from QMC
simulations with 1000000~120000 in the caseb5L564! update-
measurement cycles~left: SSE; right: loop-algorithm!. Ct is the
number of elementary update operations per cycle needed
achieve a mean autocorrelation timet51 for the measurements o
x.

bNs

SSE Loop

Ct

bNs x

Ct

bNs x

4342 1.00 0.040(46616) 1.00 0.040(20610)
8382 0.61 0.044(83615) 0.90 0.044(9268)
163162 0.40 0.044(72612) 0.56 0.044(6866)
323322 0.40 0.044(19611) 0.53 0.044(2466)
643642 0.36 0.044(01623) 0.42 0.044(07614)
1-5
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ANSGAR DORNEICH AND MATTHIAS TROYER PHYSICAL REVIEW E64 066701
SSE looks slightly superior to the loop algorithm. This d
ference can most probably be attributed to the fact that
proved estimators were used in the loop algorithm simu
tion, leading to slightly smaller errors but large
autocorrelation times. There is no sign of critical slowi
down in either algorithm.

As we have mentioned in Sec. I one of the major adv
tages of SSE is that external potentials~and magnetic fields
in spin models! can be included without a loss of perfo
mance. To verify this assertion we now examine the anti
romagnetic Heisenberg model on a chain and a square la
in a finite magnetic fieldhÞ0. For the loop algorithm we
expect to find a rapidly increasing autocorrelation time a
decreasing performance if the product of magnetic fieldh
and inverse temperature is much larger than 1. This is du
the fact that the external field is incorporated into the lo
algorithm viaa posteriori acceptance probabilities for eac
constructed loop. Forbh!1 these probabilities are sti
large, whereas atbh'1 they begin to decrease considerab

Indeed, the numerical results in Table III demonstrate t
at bh'10 the loop algorithm cannot be used any more
cause the autocorrelation times get become too long.

TABLE II. Square bilayer antiferromagnetic Heisenberg mod
at a vanishing magnetic fieldh50 and at the quantum critical poin
(J' /J52.524): calculation of the uniform magnetic susceptibil
^x& from QMC simulations with 1000000~390000 in the caseb
5L532! update-measurement cycles.

bNs

SSE Loop

Ct

bNs x

Ct

bNs x

432342 1.00 0.0115(667) 1.00 0.0114(665)
832382 0.96 0.0068(266) 1.03 0.0069(262)
16323162 0.68 0.0036(864) 1.20 0.0036(662)
32323322 0.56 0.0018(563) 1.20 0.0018(361)

TABLE III. One-dimensional chain antiferromagnetic Heise
berg model in a magnetic fieldh: calculation of magnetizationM
from QMC simulations with 1000000 update-measurement cy
~left: SSE; right: loop-algorithm! for a system withb5Ns516. Ct
is the number of elementary update operations per cycle need
achieve a mean autocorrelation timet51 for the measurements o
M.

h/J b•h

SSE Loop

Ct

C0t0 M

Ct

C0t0 M

0.02 0.32 1.00 0.008(265) 1.00 0.0083(767)
0.04 0.64 1.02 0.016(466) 0.97 0.017(662)
0.1 1.6 1.22 0.057(868) 1.84 0.057(765)
0.2 3.2 1.98 0.24(462) 7.55 0.24(362)
0.4 6.4 1.37 0.893(869) 167.40 0.89(463)
1.0 16.0 0.86 2.069(068) 2338.74 2.(24612)
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SSE, on the contrary, we do not expect any negative ef
by introducing a magnetic field whose strength is of the
der of the other elementary interactions,h'J, since noa
posteriori acceptance decision is necessary. Rather we
sume that performance is slightly worse forh/J!1 because
there are elementary interaction vertices with very differ
energy scales. Both predictions are verified by the data
Table III. For weak fieldsh!J it might be preferable to
construct loops in zero field, and to introduce the field via
a posterioriMetropolis decision on whether to accept loo
which change the magnetization, as it is done in the lo
algorithm.

For sake of completeness we also show the correspon
data for the two-dimensional Heisenberg model in Table
The results demonstrate that the different behavior of S
and the loop algorithm described in the one-dimensional c
is even more severe in two dimensions: the loop algorit
loses its efficiency atbh'1.5.

In some cases other performance measurements are
interesting. One could ask how the computation time sca
with b and Ns till a certain accuracy in a certain measur
variable is reached. This is studied in Fig. 5. For the squ
lattice Heisenberg antiferromagnet we trace the computa
time to reach an accuracy of 4 digits in energy as a funct
of b ~Fig. 5, top! and Ns ~Fig. 5, bottom!. The exponents
k~b! in C}bk(b) andk(Ns) in C}bk(Ns) derived from Fig. 5
are

k~b!50.3460.05,

k~Ns!50.4860.05.

Both quantities are smaller than 1, and Eq.~18! would return
a negative dynamical exponentz. This is due to self-
averaging: in a large system local fluctuations of a phys
observable around its mean value on different subregion
the lattice can compensate for and average out each o
thereby lowering the observable’s measured variance.
computational effort needed to obtain thermodynamical

l

s

to

TABLE IV. Square lattice antiferromagnetic Heisenberg mod
in a magnetic fieldh: calculation of magnetizationM from QMC
simulations with 1000000 update-measurement cycles for a sys
with inverse temperaturebJ516 andNs5162 lattice sites.Ct is
the number of elementary update operations per cycle neede
achieve a mean autocorrelation timet51 for the measurements o
M.

h/J bh

SSE Loop

Ct

C0t0 M

Ct

C0t0 M

0.02 0.32 1.00 0.22(468) 1.00 0.231(363)
0.04 0.64 0.83 0.47(968) 1.38 0.477(767)
0.1 1.6 0.94 1.41(069) 5.61 1.42(262)
0.2 3.2 0.44 3.47(067) 34.25 3.48(667)
0.4 6.4 0.18 7.73(764) 1691.66 7.7(867)
1.0 16.0 0.12 22.10(664)
1-6
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erages to a certain relative error scales sublinearly with
tem size and inverse temperature, so that systems of se
thousand sites or at temperatures of not more than 0.0J
can be simulated within minutes or a few hours on a stand
PC or workstation.

V. GREEN’S FUNCTIONS

The observables listed in Sec. III serve to access imp
tant static thermodynamic properties of the studied syst
However, properties such as photoemission^a†

(k,v)a(0,0)& or
spin flip ^S2

(k,v)S
1

(0,0)& are often even more interesting, a
they provide insights into the system’s dynamics. Within t
framework of SSE measuring these Green’s functio
G(k,v) requires the insertion of local changes on cert
world lines~such as removing a particle at propagation le
l 1 on world linew1 and reinserting it at propagation levell 2
on world line w2!. Performing these insertions is a high
nontrivial task since, on the one hand, detailed balance m
be assured, and, on the other hand, the whole process h
sample all distancesr 5w22w1 and all propagation differ-
encesD l 5 l 22 l 1 efficiently. Both requirements are alread
fulfilled by the loop update steps. Since this update ins
and moves local changes on the network of world lines
connecting interaction vertices, it can be used to record
corresponding Green’s functionsG(r ,D l ) ‘‘on the fly’’

FIG. 5. Scaling behavior of the computation timeC required to
reach a relative accuracy of 1024 in the measured energy of th
two-dimensional antiferromagnetic Heisenberg model. Top: lnC)
vs ln(bJ) for 10310 sites. Below: ln(C) vs ln(Ns) for bJ510. The
time was measured in seconds on a DEC workstation.
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while constructing the loop update. As an example we rec
sider the hard-core boson model from Sec. II and in parti
lar the operator loop shown in Figs. 3 and 4 which starts w
the removal of a type-2 particle on propagation level 6
world line 2; our cutoff power in the series expansion w
L59, and previous diagonal updates have producedn57
‘‘nonidentity’’ interaction vertices.

Taking level 6, the starting point of the loop, as zero po
for the propagation direction we are now able to meas
quantities of typê a1

†(r ,D l )a2(0,0)& and^a2
†(r ,D l )a2(0,0)&

during the construction of this loop. Figure 6 shows that
D l 50 exactly two measurements of^a2

†(r ,D l 50)a2(0,0)&
and one of̂ a1

†(r ,D l 50)a2(0,0)& can be performed during
the loop: one at the start~or end! of the loop at a distance
r 50, and two on adjacent world lines (r 51) while moving
down ~right! and up~left!. The recorded value at each me
surement is the product of the matrix elements of the c
ation or annihilation operators inserted at the open end
the loop under construction. We denote the state at prop
tion level 6 in our example before inserting the two creati
or annihilation operators asua~6!& and the state after insertio
of the operators asuã(6)&. Then theD l 50 matrix element
^a2

†(r 51,D l 50)a2(0,0)&—measured when the loop hea
moves down on world line 3—is

^a2
†~r 51,D l 50!a2~0,0!&5^ã~6!ua2

†~r 51,D l

50!a2~0,0!ua~6!&.

Stepping down by one more propagation level on world l
3, we can record theD lÞ0 matrix element:

FIG. 6. The loop update constructed in Figs. 3 and 4 can be u
to record measurements of the Green’s function^a2

†(r ,D l )a2(0,0)&
and ^a1

†(r ,D l )a2(0,0)&, wherer is a distance between world line
~or sites! andD l is a propagation level difference. For the sake
clarity only measurements forD l 50 are explicitly marked in the
figure.
1-7
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^a2
†~r 51,D l 521!a2~0,0!&

5^ã~5!ua2
†~r 51,D l 521!ua~5!&

3^ã~6!ua2~0,0!ua~6!&.

Leaving our hardcore boson example behind and returnin
the general case, we conclude this paragraph with the rem
that for the creation or annihilation of a fermion the record
matrix elements are always equal to 1, while they can ad
other values for spin flips or the creation or annihilation
bosons.

Having measured and recorded the quantitiesG(r ,D l ) @or
a correlation functionC(r ,D l )5^D̂2(r ,t)D̂1(0,0)&# we still
have to perform a couple of nontrivial transformation ste
till we obtain the desired quantitiesG(k,v) and C(k,v)
which describe the dynamical response of the system to
ternal perturbations. First we have to relate propagation
els D l to imaginary timest, then a Fourier transform bring
us from r space tok space; finally we need an invers
Laplace transform to step from imaginary timet to exitation
energyv.

VI. EFFICIENTLY ACCESSING THE SYSTEM’S
DYNAMICS

In this section we will discuss efficient implementatio
strategies for recordingG(r ,D l ) and for the adjacent trans
formation steps mentioned above.

The transformation from propagation levelsD l to imagi-
nary time t requires the same weight factors as discus
earlier for diagonal correlation functions:

G~r ,t!5 (
D l 50

D l S L
D l D S t

b D D l S 12
t

b D L2D l 8
G~r ,D l !

[ (
D l 50

L

w~t,D l !G~r ,D l !, ~19!

where

w~t,DL !5S L
D l D S t

b D D l S 12
t

b D L2D l

. ~20!

Working in a fixed string size representation with fixedL
instead of varyingn is more convenient because the binom
weight prefactors are fixed during the entire simulation, a
can easily be calculated once at the beginning of the sim
tion.

There are several possible ways to implement the rec
ing of G(r ,D l ) measurements and the adjacent transform
tion to G(r ,t). The easiest~and at first glance fastest! way
simply writes all recordedG(r ,D l ) data into a two-
dimensional array with dimensionsNs and L}Nsb. The
transformation toG(r ,t) can then be performed once at th
end of the simulation. However, this method has two pr
lems. A separate measurement has to be recorded each
the loop head steps up or down by one level on a world li
and whenever it traverses an interaction vertex. Recordin
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these measurements drastically slows down the loop up
process. Second, for large systems (Ns'5000) and low tem-
peratures (b'40) the two-dimensional array needed to sto
G(r ,D l ) contains about 1 000 000 000 elements and ne
more memory than available on many computer systems

In order to overcome these problems one can replace
‘‘brute force’’ recording of data onall traversed (r ,D l )
points by a Monte Carlo sampling: in each loop update
distanceD l is chosen randomly, according to the probab
ties in Eq.~19!, for each of the timest of interest. Measure-
ments are then performed only at theseD l and transformed
directly into t.

In our code we have adopted a third strategy: we perfo
all possibleG(r ,D l ) measurements@thereby exploiting the
fact thatG(r ,D l ) is constant on the entire world-line frag
ment between tho adjacent vertices# and directly transform
these intoG(r ,t) at the end of each loop update step. T
transformation after each QMC update step is necessar
keep memory requirements low.

Simply applying Eq.~19! with its computationally expen-
sive operations~divisions, powers, binomial coefficients
large sums! would now cost by far too much computatio
time. Instead we remember thatG(r ,D l ) is composed of a
relatively small number of intervalsI 5]D l 1(I ) ,D l 2(I )] with
constant function value@Fig. 7~b!#. Therefore, we can com
pute the contribution of an entireD l interval to G(r ,t) in
one step:

G~r ,t!5(
I

G~r ,I !„W~t,D l 2~ I !!2W~t,D l 1~ I !!…, ~21!

whereW is the ‘‘integrated weight function’’

W~t,D l !5 (
m50

D l

w~t,m!. ~22!

TheD l range in whichW(t,D l ) considerably differs from 0
and 1 is determined by mean value and standard deviatio
the binomial distributionw(t,D l ):

^D l &5L
t

b
, ~23!

sD l5AL
t

b S 12
t

b D . ~24!

Below ^D l &25sD l the integrated weight is zero; abov
^D l &15sD l it is 1 ~up to an error of less than 1027!. The
remaining interval rarely contains more than 50 or 100D l
points@see Fig. 7~d!#; these values can easily be stored af
having been computed once for eacht. ThusW(t,D l ) can
be calculated very rapidly with nothing but a couple
‘‘cheap’’ elementary operations.

For very large systems and very low temperatures
‘‘relevant’’ D l ranges might become so large that it would
unfavorable to store all neededW(t,D l ) values—for ex-
ample, because accessing the large arrayW@t i ,D l # would
cause too many cache misses. In this case one can stor
coefficients of some interpolation functions forW(t,D l )
1-8
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instead of the function values themselves. Practical t
have shown that dividing the relevant interv
@^D l &25sDl ,^Dl&15sDl# into six sub-intervals with bound
aries ^D l &25sD l , ^D l &22.8sD l , ^D l &21.3sD l , ^D l &,
^D l &11.3sD l , ^D l &12.8sD l , and ^D l &15sD l , and inter-
polatingW in each subinterval by a fifth-order polynomial,
a good compromise between evaluation speed~about 15 el-
ementary operations!, storage requirements~36 floating point
numbers for eacht! and interpolation accuracy~better than
2..331027!.

The next transformation step, Fourier transforming fro
G(r ) to G(k), is a well known standard method that do
not impose any fundamental problems. However, stand
Fast Fourier transform~FFT! algorithms perform best if al
G(k) values are to be calculated, whereas in practice
rarely needs allk values and is interested only in onek-point
or in some special points of the Brillouin zone, e.g., the po
k5(p,p) and its immediate neighborhood. Then one c
save a lot of computation time by not recurring to FFT b
using optimized algorithms designed particularly for the
cases. If we are interested in only one or a fewk points we

FIG. 7. Transformation of Green’s function measurements fr
the propagation levelD l to the imaginary timet: the raw measure-
ments recorded during the loop update on different world-line s
ments~a! are combined into a single functionG(r ,D l ) ~b!. For a
given t,G(r ,t) could be computed by summing up allG(r ,D l )
weighted withw(t,D l )5(D l

L )(r /b)D l@12(t/b)#L2D l ~c!. A much
more efficient way uses the ‘‘integrated weight functio
W(t,D l )5Sm50

D l w(r ,m) ~d! to obtain the total contribution of eac
range ]D l I ,D l 2] in which G(r ,D l ) is constant. In the example
shown hereG(r ,t) is then simplyaA1bB1cC.
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can use a simple Fourier transform to obtain$G(k,t)% from
$G(r ,t)% in O(Nsnk) operations~nk is the number ofk
points!. Correlation functionsC(k,t) can even be measure
directly in k space, which also can be done inO(Nsnk) op-
erations. For the case 1!nk!Ns we have implemented a
Fourier transform algorithm performing much better th
FFT in this situation.@21#

Unlike a Fourier transform a Laplace transform in gene
cannot be inverted. Therefore the last transition step fromt
to v is by far more complicated than the previous one fro
t to k. We use maximum entropy techniques develop
within the last years and refer to earlier publications.@22#

VII. EXAMPLE: SPIN CORRELATIONS OF THE
TWO-DIMENSIONAL HEISENBERG MODEL

In this section we use our standard benchmark mode
the square lattice Heisenberg antiferromagnet—to test
method of Green’s functions measurements for correctn
and numerical efficiency. To this purpose we calculate a
compare the correlation functions

^Sz~t,k!Sz~0,k!&, ~25!

^S1~t,k!S2~0,k!&. ~26!

In the Sz eigenbasis, which is normally used to span t
model’s Hilbert space, expression~25! is a time-dependen
correlation function of two diagonal operators. Therefore,
diagonal operator in Eq.~25! can be measured using Eq.~15!

TABLE V. Comparison of 1
2^Ŝ

1(k1Q,t)Ŝ2(k1Q,0)& and
^Sz(k,t)Sz(k,0)& for the 16316-site two-dimensional antiferro
magnetic Heisenberg model atb516 and zero magnetic field. Th
table shows somek values around~p,p!.

k t ^Sz(k,t)Sz(k,0)& 1
2 ^S1(k1Q,t)S2(k1Q,0)&

Sp2 ,
p

2D 0 0.16(89620) 0.168(264)

0.1 0.00(01617) 0.003(263)
0.5 20.00(36615) 20.000(463)

S3p

4
,
3p

4 D 0 0.38(39621) 0.386(066)

0.1 0.01(74620) 0.020(965)
0.5 0.00(41619) 0.000(464)

~p,p! 0 11.3(35617) 11.36(169)
0.1 10.4(04617) 10.42(369)
0.5 9.0(83617) 9.09(369)

S2p

4
,pD 0 0.53(85623) 0.542(267)

0.1 0.06(31620) 0.063(066)
0.5 0.00(38617) 0.000(065)

Sp2 ,pD 0 0.28(92623) 0.287(665)

0.1 0.01(08619) 0.008(564)
0.5 0.00(06617) 0.000(364)

-
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without introducing changes in the world lines and vertic
defining the current state of the system. The Green’s func
Eq. ~26!, however, consists of two nondiagonal operators a
can only be measured with our new method of record
general Green’s functions that was described in Sec. V. F
thermore, at zero fieldh50 both correlation functions ar
related via

^Sz~t,k!Sz~0,k!&5 1
2 ^S1~t,k!S2~0,k!&, ~27!

so that the correctness of both estimators can be checke
directly comparing these two quantities.

When working with the antiferromagnet we need to ke
in mind that in order to keep the exchange matrix eleme
S1S2 andS2S1 positive we need to perform a gauge tran
formation, multiplyingS1 andS2 on one sublattice by21.
This gauge transformation does not affect any diagonal
erator, but leads to a momentum shift ofQ5(p,p) and Eq.
~27! for the Green’s function and Eq.~27! becomes

^Sz~t,k!Sz~0,k!&5
1

2
^Ŝ1~t,k1Q!Ŝ2~0,k1Q!&. ~28!

The numerical data in Table V perfectly fulfill this equalit
and hence demonstrate the correctness of our Green’s f
tions measurements.

In the simulation recorded in Table V we have calcula
^SzSz& and ^S1S2& for all allowed k points on the path
(0,0)→(p,0)→(p,p)→(0,0). Table V shows a subset o
these points in the vicinity of~p, p!. The three tasks ‘‘per-
forming updates,’’ ‘‘measurinĝ SzSz&, ’’ and ‘‘measuring
^S1S1& ’’ contributed the following percentages to overa
computation time:

performing updates:18.8%,
en

ed

e
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measuring^SzSz&:36.1%,

measurinĝS1S2&:45.1%.

From this list and the measurement accuracies in Table V
conclude that the highly nontrivial Green’s functions me
surements lead to a slightly better accuracy than the di
^Sz(r ,t)Sz(r 8,t8)& measurements, while consuming rough
the same amount of computer time as the latter. Measu
the Green’s function is thus the preferred method of de
mining also the diagonal real space dynamical correlat
functions.

VIII. SUMMARY

Stochastic series expansion~SSE!, together with the
implementation tricks and Green’s functions measureme
described in this paper, is a highly performing quantu
Monte Carlo simulation technique, allowing one to acce
both static and dynamical properties of very large system
thousands of sites and at very low temperatures. Comp
to the loop algorithm, which is slightly faster on big system
for some specific Hamiltonians, SSE has the advantage
not suffering from exponential slowing down in extern
fields; furthermore, SSE is more easily applicable to w
classes of Hamiltonians.
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