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Accessing the dynamics of large many-particle systems using the stochastic series expansion
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The stochastic series expansi@SB method is a quantum Monte Cal@MC) technique working directly
in the imaginary time continuum and thus avoiding “Trotter discretization” errors. Using a nonlocal “operator-
loop update,” it allows one to treat large quantum mechanical systems of many thousand sites. In this paper we
first give a comprehensive review on SSE and present benchmark calculations of SSE scaling behavior with
system size and inverse temperature, and compare it to the loop algorithm, whose scaling is known to be one
of the best of all QMC methods. Finally we introduce an efficient algorithm to measure Green’s functions and
thus dynamical properties within SSE.

DOI: 10.1103/PhysReVvE.64.066701 PACS nuni®)er02.70.Ss, 05.10.Ln

. SSE TECHNIQUE whereH is the system’s Hamiltonian angk= 1/T the inverse
_ o o temperature. Standard QMC techniqizS] split up the ex-
Since their first formulation in the early 19804,2],  ponential into a product of many “imaginary time slices”

quantum Monte Carlc()QI\/_IC) m_ethod_s have b‘?mme one of e 4™ and truncate the Taylor expansion of this expression
the most powerful numerical simulation techniques and tool(?

in many-body physics. The first OMC algorithms were base fter a certain order A7, thereby introducing a discretiza-

on a discretization in imaginary timgTrotter decomposi- lon error of orderA7”. In SSE, however, one chooses a
o ginary P convenient Hilbert basfa)} (for example theS? eigenbase
tion”), and used purely local update steps to sample the sy

— Z Z Z - .
tem’s statistically relevant states. These methods require aa»_ﬂsl’sz"”’s'\‘m and expandg into a power series

delicate extrapolation to zero discretization in order to re- e n

duce systematic errors. Furthermore, the purely local updates Z:E E (=8 <a||:|n|a,>_ @)

often prove incapable of traversing accessible states in an @ n=o n!

efficient way: autocorrelation times grow rapidly with in-

creasing system size. The statistically relevant exponents of this power series are
A more recent class of QMC algorithms, the so-calledcentered around

“loop algorithms” [3—10] uses nonlocal cluster or loop up-

date schemes, thus reducing autocorrelation times by several (m=NsB, S

grders of ma'lg'mtude In SOME Cases. Unfortynately, itis 0ﬂer\}vhereNS is the number of sitegor orbitalg in the system.
ighly nontrivial to construct a loop algorithm for a new

Hamiltonian, and some important interactions cannot be inLThIS follows from Eq.(11) and from(E)eNs]. We can thus

corporated into the loop scheme. These interactions have {6uncate_ the |r_1f|n|te sum over at a f'n't.e cutoff IengtH__

be added as posteriori acceptance probabilities after the “NsfB W't.hOUt introducing any systematic error for practical
construction of the loop, which can seriously decrease ovelomputations. The be_s_t value fbrpaq be determined and
all efficiency of the simulation. Some loop algorithms alsoad]UStecj during an initial thermalization phase of the QMC

suffer from “freezing” [3,11] when the probability is high simulation: beginning with a relatively small value lof one

that a certain type of cluster occupies almost the whole sysQan st_art the QMC update Process, _sto_p it whenever the cut-
tem. off L is exceeded, and continue with increased by 10—

0,
These insufficiencies can be overcome using the “sto—20 0.

chastic series expansion{SSB approach together with a ~ Now letH be composed of a certain number of elemen-
loop-type updating schem@see Ref[12] and earlier works ~tary interactions involving one site or twuch as on-site
referenced therejn (i) SSE is(almos} as efficient as loop Potentials, nearest neighbor hopping, etn order to obtain
algorithms on large systemsj) it is a numerically exact @ uniform notation we combine those interactions affecting
method without any discretization error; afii) it is as easy ~Only one site to new “bond” interaction¢One can, for ex-
to construct and general in applicability as world-line meth-ample, take two chemical potential termsf (site 1 and
ods. - (site 2 and form the bond term Clu[A(sitel)
Following Sandvik[12—14 we briefly outline the basic *h(site 2)] with the constanC assuring that the sum over
ideas of SSE now. The central quantity to be sampled in all new bond terms equals the sum over all initial on-site

QMC simulation is the partition function terms) We thus assume in the following thét is a finite
. sum of “bond” termsH,,, and that the operator stringt’ in
Z=Tr(e 1), (1) Eg.(2) can be split into terms of the form

1063-651X/2001/646)/06670110)/$20.00 64 066701-1 ©2001 The American Physical Society



ANSGAR DORNEICH AND MATTHIAS TROYER PHYSICAL REVIEW E64 066701

n .
e final state [ (-) (1) (2) (= () (1)
[1 Ay, ) )
=1 propagation step
whereb; labels the bond on which the elementary interaction 91
term operates and; the operator typée.g., density-density g
interaction or hopping By introducing “empty” unit opera-
torsH(®=id, one can artificially grow all operator strings to 7
lengthL and obtain 14]
6_
L
BM(L—n)! -\ a
2= 3 oIl ~A)a). ©® 51
a {S} : i=0 i
4_
Here {S,} denotes the set of all concatenationsLobond 5
operatorsH E)a) andn is the number of nonunit operators in |
S 5]
If we want to sample ¢,S,) according to their relative
weights with a Monte Carlo procedure we have to make sure 11
that the matrix element of each bond operator is zero or ; ;
negative, since in order to fulfill a detailed balance we 01 : : : : : : site
choose the acceptance probabilityf a bond interaction to 0 1 2 3 4 5
be proportional to its negative matrix element. However, this
requires that all matrix elements be nonpositive. Does a start state | () (1) @) ) (D (1)>

simple redefinition of the zero of energy help? For diagonal

operators we can indeed add the same negative coritant _ _ . .
atate for a physical system with three allowed occupations per site:

each of them without changing the system’s properties, an . . o .
thus make all matrix elements negative or zero. Um‘ortu—emloty (dashed ling; particle 1(solid ling), or particle 2(double

. . line). The initial cutoff lengthL has been set tb=9, and the initial
nately, for nondiagonal terms an equally simple remedy doe ond operator string consists only of “empty” operators
not exist. However, if one can show that such a nondiagonal '
operator must appear pairwise for the matrix e'e”_‘e”t 10 PRard-core bosons on a six-site chain with periodic boundary
nonzero, its matrix element can be multiplied by without conditions and Hamiltonian
changing the physics of the systefithis corresponds to a
gauge transformation on all lattice sites with odd pari@n .
nonfrustrated lattices this trick is widely applicable, which H=—t 2 > Plala,i i tH.clP+ Z PaD Na
considerably increases the set of Hamiltonians suitable for astz a2 '
SSE. If there are valid world-line configurations carrying an -
odd number of nondiagonal vertices with positive matrix + _212 1.2 Plalal . tHClP, (6)
elements—which is typical for Hamiltonians and lattices o '
with frustrations—only the conventional approach of dealingyith
with the sign problem helpg2,16,17: one simulates a new
system with the acceptance probability=|p|, and obtains

FIG. 1. World-line representation of an arbitrarily chosen start

the estimate of a physical quanti€ in the form 77=2i (1—nging). ()
(Q)= (Qsgnp) The creation operataa,; creates a hardcore boson of type
(sgnp) a=1 or 2 on sitei. The first term(t) is a nearest neighbor

hopping term, the second ternu() a chemical potential,
Unfortunately,(sgnp) tends to zero exponentially with in- and the third term g,) shows pair creation and annihilation.
creasing system sizlg and inverse temperatui® so that The projection operatdP implements hard core constraints
the computation time needed to achieve a certain accuradyetween the two types of bosons. In the world-line
exponentially increases witN 8 and the practically acces- representation—in which the horizontal axis represents the
sible range of system sizes and temperatures is rather limitedpatial dimension and the vertical axis the propagation level
I=1..L—we symbolize type-1 bosons by single solid lines,
Il. LOOP UPDATES type-2 bosons by double lines, and empty sites by dotted
lines (see Fig. L
Having outlined the basic idea of SSE, we review the Sandvik separated the set of all bond operators into three

nonlocal updating updating scheme proposed by Sandviklasses: empty opera'EoFi;(O), diagonal operatorsl(®, and
[12]. In the following figures we illustrate the scheme by nondiagonal operatord"®. The QMC process starts with
means of a simple physical model: a system of two types oéin arbitrarily chosen initial stater) and an empty operator
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FIG. 3. In the operator loop update step a local change is in-
FIG. 2. In the diagonal update step a certain number of emptygerted on a world line and then moved through the world lines and
bond operators is replaced by diagonal ofee vice versa In this ~ vertices. At each vertex a new direction is chosen such that the

example seven of the initial nine identity operators have been reProbability of a path is proportional to the negative energy of the
placed. resulting interaction vertetdetailed balande

ina: in Fio. 1. f le. th . ied b Nondiagonal bond operators cannot simply be inserted
string: In Fig. 1, for example, three sites are occupied by, the world-line configuration as diagonal operators can:
type-1 bosons, two sites are empty,

_ _ and site 2 is occupied By,eir insertion and modification requires local changes of the
a type-2 particle. Now two different update steps are peryorid-line occupations. Earlier we discussed that concat-

formed in alternating order: a diagonal update exchangingnated local changes along a closed gathloop) through
empty and diagonal bond operators and an operator l00ghe network of world-lines and interaction vertices are much
update transforming and exchanging diagonal and nondiaggnore efficient than independent purely local changes. Sand-
nal operators. vik proposed the following method to construct such a loop:
In the diagonal update step the operator string positiong certain world line and a propagation levedn it is chosen
I=1..L are traversed in ascending order. If the current bondrbitrarily; at the chosen point one disturbs the world line by
operator is a nondiagonal one it is left unchanged; if it is ara local change—for example, the creation or annihilation of
empty or diagonal operator it is replaced by a diagonal o& particle. Then one chooses a directiaup or down in
empty one with a certain probability satisfying detailed bal-propagation directionand starts moving the disturbation in
ance(i.e., an operator with lower energy is more likely to be this direction(Fig. 3). The aim is to move this disturbation
maintained or inserted than an operator with higher energy(we will call it “loop head” in the following) through the
(Fig. 2. network of world lines and interaction vertices until the ini-
Following Sandvik[12], we use the notation tial discontinuity is reached again and healed up.
| Whenever the loop head reaches an interaction vertex we
~ (@) must decide how to go on; in the situation shown in Fig. 3,
|“(|)>:iﬂl Hbil | ) ) the “bounce” path is always possible since it results in an
- unchanged vertex. The “straight” path results in a diagonal
vertex, and the path is possible if the matrix element of that
vertex is nonzero. The “turn” path is only allowed if the
Hamiltonian contains nearest neighbor hopping terms for
article type 2, while the “jump” path is forbidden unless the
amiltonian also allows for pair creation of particle type 2.
The choice among the allowed paths must again satisfy de-
) tailed balance.

for the state obtained by acting ¢a) with the firstl bond
operators angluy(l)) for the restriction of a(l)) to the bond

b. Let M be the total number of interacting bonds on the
lattice. Then the detailed balance conditions for the diagon
update read

M B{ap(D[HE [ ap(1))
L—n

In our model—in which both pair creation and hopping
are allowed—we might end up with the series turn, jump,
turn, turn of path choices, after which the starting point is
L—n+1 regained and the world-line discontinuity healed(&m. 4).

~ : The overall result of this loop is that we have replaced four
Mﬁ(ab(l)|HE,d)|ab(l)>) diagonal interactions by four nondiagonal interactions
(99  (marked “n.d.”) in Fig. 4.

11
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propagation step For this reason our SSE code additionally performs a so-
9 called “free world-line update” on each world line carrying
n.d. no vertex at all. In this update the occupation of the entire
3 world line is changed to a randomly selected new occupa-
P tion.
74 P We have stressed several times that all local path choices
~i satisfy a detailed balance. What remains to be shown is that
61 the updating mechanism is ergodic in the grand canonical
o ensemble, i.e., that all bond operator striggsand all states
37 ; ’ |&) can be reached. In order to demonstrate this we remind
7 the reader that loops crossing the boundary between the first
and last propagation levelsmodify the initial statela) for
3 the next update cycle. Therefore, the loops sample not only
S, but also|a), and starting from a completely empty system
24 : : any allowed configuration can be generated by a series of
R loops traversing one entire world-line each.
1 ' ' Numerical tests of the loop-update mechanism described
above show that, for large system sizes and if there are el-
07 : : : : : : site ementary interactions with very different energy scales, the
0 1 2 3 4 5 loop construction sometimes gets stuck and the loop head

does not find its way back to the starting point even after
millions of steps. In order to avoid this, trapping loops that
exceed a critical length are aborted and the original state of
the vertices is restored. This causes no systematic errors for

Sandvik’s method implicitly assumes that running with ameasurements done between loop updates as qetaileq bal-
world-line change into an interaction vertex always require2Nce is not violated. The measurements of Green.?: functions
choosing an outgoing leg and a change on it and continuin@ ("), however, which are performed “on the run” during
the loop. But what if the encircled vertex in Fig. 3 with three 100P constructiorsee Sec. Y/ are biased if large loops are
empty legs and one leg occupied by particle 2 is also a validrown away. Since large loops are more likely to reach re-
vertex? Then we have to add a fifth possibility to the list of9ions of the systems far away from the starting point than
allowed path choices: “stop here.” If this last alternative is ShOrt loops, the values &(r) for large distances are sys-
chosen the loop has reached a dead end. In this case our S@@atl_cally underestimated if a considerable amount of large
code terminates the loop here, goes back to the starting poi@OPS is aborted. Hence the total number of aborted loops has
and moves in the opposite direction until either another dealP Pe checked before one can trust in the recorded Green's
end is encounterd or the starting point is reached again argnctions.
the initial discontinuity is healed up.

From Fig. 3 one can see that when choosing a path Ill. MEASUREMENTS

through the current vertex there is always the possibility to - . . -
undo the current change on the incoming leg of the vertex Efficient estimators for many static observables within the

and to “bounce” backward on the same leg. This pathSSE mechanism were derived by Sandetial. [18].
choice is normally not very helpful since it means one step (i) All observablesH® appearing as elementary interac-
backward in the construction of the current loop. Fortu-tions in the system’s Hamiltonian can be measured very eas-
nately, all bounce paths can be suppressed without violatintly by counting the corresponding interaction vertices in the
detailed balance if on each bond all nonzero matrix elementgond operator string, : if S_ contains on averagéN(a))
are equal, or can be made equal after a suitable energy shitich vertices, one obtains
of the diagonal vertices. As an additional benefit, without the
bounce path the algorithm becomes equivalent to the loop N 1
algori i (H®)=——=(N(a)). (10)
gorithm. For each vertex a path can be chosen according to B
a detailed balance, after which the loop construction be-
comes deterministic. All the Heisenberg models studied in
Sec. IV are examples for this class of “optimizable” physi-
cal systems.
A further improvement of the update scheme is possible 1
in the limit of high temperatures, i.e—0. Equation(3) E=——(n), (11)
tells us that the average number (@onempty vertices is B
rather small in this situation, and a large part of all world
lines is not connected to any vertex at all. The loop updatavheren is the number of nonempty interaction vertices in
will not be very efficient here, since it essentially needs aS_. (This equation can be derived very easily frgif)
sufficient number of vertices interconnecting the world-lines.=(d/3B)In Z.)

FIG. 4. The loop update close if the initial insertion point is
reached again and the inserted world-line discontinuity thus re
moved.

(i) Summing over all elementary terriE® gives an es-
timator for the internal energlg

066701-4



ACCESSING THE DYNAMICS OF LARGE MANY. .. PHYSICAL REVIEW E 64 066701

(iii) For the heat capacit, we additionally have to TABLE |. Two-dimensional antiferromagnetic Heisenberg
measure the fluctuations af model at a vanishing magnetic field=0: calculation of the uni-
form magnetic susceptibility(x)=[#M)/dh]|,-o from QMC
Cy=(n?—(n)y>—(n). (12 simulations with 1000000120000 in the cas@=L =64) update-

R measurement cyclegeft: SSE; right: loop-algorithin Cr is the
(iv) Equal time correlations of two diagonal operatbrs  number of elementary update operations per cycle needed to

and [“)2 can be measured via achieve a mean autocorrelation time 1 for the measurements of
X-
<f>162>=<n+12 dz[l]dl[l]> (13) SSE Loop
~ Cr Cr
wheredi[l]:<a(l)|Di|a(l)). ' . BN, BN, y BN, y
Are there equally efficient estimators for time-dependen

observables? In SSE the propagation indledescribes the 4x4? 1.00 0.040(46:16) 1.00 0.040(2f10)
evolution of an initial state when a series of elementarysx 82 0.61  0.044(83%15) 0.90 0.044(928)

terms of the Hamiltonian is acting on it; thiplays a role  16x 16 0.40  0.044(7212) 0.56 0.044(686)
analogous to imaginary time in a standard path integral32x 322 0.40  0.044(1¢11) 0.53 0.044(246)
More detailed calculation§13] showed that an imaginary 4x 642 0.36  0.044(0%23) 0.42 0.044(0F14)
time separationr corresponds to a binomial distribution of
propagation distanceal; the time-dependent correlation
(D,(7)D4(0)), for example, is related to the correlator @ given statéa(™) into an new statéa("*") in such a way
that the mean autocorrelation timés equal to 1. In SSE the
number of elementary update operations is the number of
CiAD)= 2 do[1+Al]dy[1] (14  diagonal vertices tested for replacement plus the number of
vertices traversed during the loop update. In the following
we compare SSE to the loop algorithm, which is known to
show an excellent scaling behavior for many benchmark
A A n n\(r\Al F\n-Al problems. As test models we choose isotropic antiferromag-
(Dz(r)Dl(O))=< E (AI)<_) (1 ) Clz(AI)> netic Heisenberg models in one, two, and three dimensions
Al=0 B B with up to 4096 sites an@ up to 64 in a vanishing or finite
external magnetic field.
Following Ref.[19] we described the scaling behavior of
.the two algorithms by means of the dynamical exporent
defined from

via

(19

Instead of working in a representation with varying fixed
string sizeL can be chosen, as the identity vertices are uni-
formly distributed and do not influence the mapping from
index to imaginary time.

The corresponding generalized susceptibilities can be cal-

culated straight forwardly by integratif@®,()D1(0)) over  pyere -C is the computational efforti.e., the number of el-

T ementary update stepseeded to achieve a mean autocorre-
s A lation time of 7=1 for the measurements of the studied
X12=f (Dy(7)D4(0))d, (16)  quantity; D is the spatial dimension of the simulated system
0 and|=2/N; its length in each dimension. From Table | we
see that both simulation techniques show an approximately
equal performance and an very good scaling behavior: since
n—1 the ratioC7/(BN,) is approximately constant we obtain
2 dz['])( > d1[|]) ~0 in both cases.
=0 Next we enlarge the square lattice into the third spatial
dimension and examine a bilayer quantum Heisenberg anti-
B 2 E dy[17d4[17) . (17) ferromagnet at the quantum_critical point separating the spin
(fhL 1) gap phase from the magnetically ordered ¢2@. Our aim
is to measure the scaling behavior and dynamical exponents
IV. SCALING BEHAVIOR e_xactly_ at this quantum _critical_point. _This point is of par-
ticular interest since the immediate neighborhood of a phase
One decisive criterion for the performance of a QMCtransition often leads to the so-called “critical slowing
simulation technique is the behavior of computation ti®e down” of QMC simulations, i.e., exploding autocorrelation
as a function of system si2ég or inverse temperatur@. To  times and thus a dramatic decrease of efficiency of the QMC
facilitate a hardware-independent measuremen€ @nd a  update process.
comparison to other QMC techniques, we defldes the The results in Table Il show that the scaling behavior for
number of elementary update operations needed to transforboth algorithms is still almost linear iBNg. The scaling for

7Cx BIPIZ, (18

which gives[13]

X12= <n(n+ 1)
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TABLE Il. Square bilayer antiferromagnetic Heisenberg model  TABLE IV. Square lattice antiferromagnetic Heisenberg model
at a vanishing magnetic field=0 and at the quantum critical point in a magnetic fieldh: calculation of magnetizatioM from QMC
(J, 13=2.524): calculation of the uniform magnetic susceptibility simulations with 1000000 update-measurement cycles for a system
(x) from QMC simulations with 1000000390000 in the cas@ with inverse temperaturgJ=16 andN,= 16 lattice sites.Cr is

=L =32) update-measurement cycles. the number of elementary update operations per cycle needed to
achieve a mean autocorrelation time 1 for the measurements of
SSE Loop M.
Cr Cr SSE Loop
N AN BN
BNs s X s X Cr Cr
4x2x 42 1.00 0.0115(6:7) 1.00 0.0114(&5) /3 gh Com M Como M
8x2x 8?2 0.96 0.0068(%6) 1.03 0.0069(22)

16x2x162  0.68 0.0036(&4) 1.20 0.0036(6:2) 0.02 032 1.00 0.22(#38) 1.00 0.231(%3)
32x2x32 056 0.0018(%3) 1.20 0.0018(3:1) 0.04 0.64 0.83 0.47(28) 1.38 0.477(%7)

0.1 1.6 094  1.41(89) 5.61 1.42(2:2)
0.2 32 044  347(87) 3425 3.48(&7)
SSE looks slightly superior to the loop algorithm. This dif- 0-4 64 018 7.73(%4) 1691.66 7.7(8&7)

ference can most probably be attributed to the fact that im1.0 16.0 012 22.10(64) ——— ———
proved estimators were used in the loop algorithm simula=
tion, leading to slightly smaller errors but larger )
autocorrelation times. There is no sign of critical slowing SSE, on the contrary, we do not expect any negative effect
down in either algorithm. by introducing a magnetic field whose strength is of the or-

As we have mentioned in Sec. | one of the major advander of the other elementary interactioriss=J, since noa
tages of SSE is that external potentiéasid magnetic fields posteriori acceptance de_cisit_)n is necessary. Rather we pre-
in spin models can be included without a loss of perfor- Sume that performance is slightly worse folJ<1 because
mance. To verify this assertion we now examine the antifer{here are elementary interaction vertices with very different
romagnetic Heisenberg model on a chain and a square latti&"ergy scales. Both predictions are verified by the data in
in a finite magnetic fielch#0. For the loop algorithm we Table lll. For weak fieldsh<J it might be preferable to
expect to find a rapidly increasing autocorrelation time andFonstruct loops in zero field, and to introduce the field via an
decreasing performance if the product of magnetic fleld @ PosterioriMetropolis decision on whether to accept loops
and inverse temperature is much larger than 1. This is due thich change the magnetization, as it is done in the loop
the fact that the external field is incorporated into the loop2lgorithm.

algorithm viaa posteriori acceptance probabilities for each ~ FOr sake of completeness we also show the corresponding
constructed loop. FoBh<1 these probabilities are still datafor the two-dimensional Heisenberg model in Table IV.

large, whereas g8h~ 1 they begin to decrease considerably, The results demonstrate that the different behavior of SSE
Indeed, the numerical results in Table 11l demonstrate thagnd the loop algorithm described in the one-dimensional case
at Sh~10 the loop algorithm cannot be used any more bels even more severe in two dimensions: the loop algorithm

cause the autocorrelation times get become too long. FdPSes its efficiency aBh~1.5.
In some cases other performance measurements are more

interesting. One could ask how the computation time scales
with B8 and Ng till a certain accuracy in a certain measured

from QMC simulations with 1000000 update-measurement cycle%/é:[.'abla IS reabched. -l;.rf"S IS StUd'e? n l?g. 5'tf|1:or the S(iu?re
(left: SSE; right: loop-algorithmfor a system with3=N¢=16.Cr attice meisenberg antiierromagnet we frace the computation

is the number of elementary update operations per cycle needed {gne to _reach an accuracy Qf 4 digits in energy as a function
achieve a mean autocorrelation time 1 for the measurements of Of B (Fig. 5, top and N (Fig. 5, bottom. The exponents

TABLE Ill. One-dimensional chain antiferromagnetic Heisen-
berg model in a magnetic field: calculation of magnetizatioM

M. k(B) in Coc BB andk(Ny) in Cx B(Ns derived from Fig. 5
are
SSE Loop
k(B)=0.34+0.05,
Cr Cr

h/J B-h  Como M Como M k(Ng)=0.48+0.05.
002 032 1.00 0.008(25) 1.00 0.0083(%7) Both quantities are smaller than 1, and EB) would return
0.04 0.64 1.02 0.016(#6) 0.97 0.017(&2) a negative dynamical exponert This is due to self-
0.1 1.6 122 0.057(88) 1.84 0.057(%5) averaging: in a large system local fluctuations of a physical
0.2 3.2 198 0.24(#2) 7.55 0.24(%2) observable around its mean value on different subregions of
0.4 6.4 137 0.893(89) 167.40 0.89(43) the lattice can compensate for and average out each other,
1.0 160 0.86 2.069(88) 2338.74 2.(2412) thereby lowering the observable’s measured variance. The

computational effort needed to obtain thermodynamical av-
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® + FIG. 6. The loop update constructed in Figs. 3 and 4 can be used

to record measurements of the Green'’s func(iai(r,Al)az(0,0))

5.5 and(a{(r,AI)az(0,0», wherer is a distance between world lines
(or siteg and Al is a propagation level difference. For the sake of
5 - : . = . c_Iarity only measurements fakl=0 are explicitly marked in the
1n N, figure.

FIG. 5. Scaling behavior of the computation tifBaequired to
reach a relative accuracy of 18 in the measured energy of the
two-dimensional antiferromagnetic Heisenberg model. TopC)Iin(
vs In(BJ) for 10X 10 sites. Below: INT) vs In(Ny) for BJ=10. The
time was measured in seconds on a DEC workstation.

while constructing the loop update. As an example we recon-
sider the hard-core boson model from Sec. Il and in particu-
lar the operator loop shown in Figs. 3 and 4 which starts with
the removal of a type-2 particle on propagation level 6 of
world line 2; our cutoff power in the series expansion was

erages to a certain relative error scales sublinearly with syé:zgz anq Q'rgwous @agona_l updates have produced’

tem size and inverse temperature, so that systems of severd|onidentity” interaction vertices. .

thousand sites or at temperatures of not more than 0.001 Taking level 6! the starting point of the loop, as zero point

can be simulated within minutes or a few hours on a standarfP" e propagation direction we are now able to measure

PC or workstation. quantities of typda;(r,Al)a,(0,0)) and(a,(r,Al)a,(0,0))

during the construction of this loop. Figure 6 shows that for

Al=0 exactly two measurements &} (r,Al=0)a,(0,0))

and one of(al(r,Al=0)a,(0,0)) can be performed during
The observables listed in Sec. Ill serve to access importhe loop: one at the stafor end of the loop at a distance

tant static thermodynamic properties of the studied systent.=0, and two on adjacent world lines 1) while moving

However, properties such as photoemissiafy ,ya0,0) Of  down (right) and up(left). The recorded value at each mea-

spin flip (S™(k..)S" (0.0)) are often even more interesting, as surement is the product of the matrix elements of the cre-

they provide insights into the system’s dynamics. Within theation or annihilation operators inserted at the open ends of

framework of SSE measuring these Green's functionshe loop under construction. We denote the state at propaga-

G(k,w) requires the insertion of local changes on certaintion level 6 in our example before inserting the two creation

world lines(such as removing a particle at propagation levelor annihilation operators d&(6)) and the state after insertion

I, on world linew; and reinserting it at propagation levgl  of the operators akx(6)). Then theAl =0 matrix element

on world line w,). Performing these insertions is a highly (a;(rzl,Al=0)a2(0,0))—measured when the loop head

nontrivial task since, on the one hand, detailed balance mustoves down on world line 3—is

be assured, and, on the other hand, the whole process has to

V. GREEN'S FUNCTIONS

sample all distances=w,—w; and all propagation differ- (al(r=1,A1=0)a,(0,0))=(&(6)|aj(r=1Al
encesAl =1,—1, efficiently. Both requirements are already
fulfilled by the loop update steps. Since this update inserts =0)ay(0,0)|a(6)).

and moves local changes on the network of world lines and
connecting interaction vertices, it can be used to record th&tepping down by one more propagation level on world line
corresponding Green’s function&(r,Al) “on the fly” 3, we can record thal#0 matrix element:
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(az(r= 1,Al=—1)ay(0,0)) these measurements drastically slows down the loop update
process. Second, for large systerg+45000) and low tem-
=(@(5)|a}(r=1A1=—1)|a(5)) peratures 8~ 40) the two-dimensional array needed to store

G(r,Al) contains about 1000000000 elements and needs
more memory than available on many computer systems.

Leaving our hardcore boson example behind and returning t Int or;jer t(,? overc((j)me thfeze tproblelrlnst one cag reglidce the
the general case, we conclude this paragraph with the remar r_ute borce Mrector (':ngl of da "’II. Or_‘a. ravr:arfe (. d)t
that for the creation or annihilation of a fermion the recorded®?'"ts By @ Vonte L.ario sampiing. in €ach loop update a

matrix elements are always equal to 1, while they can adc)pq!istanceAI is chosen randomly, according to the probabili-

other values for spin flips or the creation or annihilation of €S iN Ed-(19), for each of the times of interest. Measure-
bosons. ments are then performed only at théskeand transformed

: : directly into 7.
Havmg' measurt.ad and recordiad the cluantrﬂes,AI) [(?r In our code we have adopted a third strategy: we perform
a correlation functiorC(r,Al)=(D,(r,7)D1(0,0))] we still

- _ all possibleG(r,Al) measurementihereby exploiting the
have to perform a couple of nontrivial transformation steps, thatG(r,Al) is constant on the entire world-line frag-
till we obtain the desired quantitie&(k,w) and C(k,w) i

. . . ment between tho adjacent vertitend directly transform
which describe the dynamical response of the system to e ) ¢ y

| bati Fi h | ion | these intoG(r,r) at the end of each loop update step. The
terna Pef“” E.ltlonS.. Irst we have to re ate propagatlc_m SVfransformation after each QMC update step is necessary to
els Al to imaginary timesr, then a Fourier transform brings

f K tinall d . keep memory requirements low.
us from r space tok space; finally we need an inverse Simply applying Eq(19) with its computationally expen-
Laplace transform to step from imaginary timéo exitation

sive operations(divisions, powers, binomial coefficients,

X (@(6)|az(0,0)[«(6)).

energyw. large sumps would now cost by far too much computation
time. Instead we remember th@t(r,Al) is composed of a
VI. EFFICIENTLY ACCESSING THE SYSTEM'S relatively small number of intervals=]Al4y,Al,q] with

DYNAMICS constant function valugFig. 7(b)]. Therefore, we can com-

In this section we will discuss efficient implementation PUté the contribution of an entiral interval to G(r,7) in
strategies for recordinG(r,Al) and for the adjacent trans- one step:
formation steps mentioned above.

The transformation from propagation leve$ to imagi- G(r,r)=2 G(r,(W(7,Aly ) —W(T,Alyy)), (21
nary time 7 requires the same weight factors as discussed !

earlier for diagonal correlation functions: whereW is the “integrated weight function”

Al L\ [ 7\ F\Lar Al
=> —| [1-= G(r,Al)
Grhm=2 lalllg B : W(r,AD)= 2 w(r,m). (22
L
_ The Al range in whichw/(r,Al) considerably differs from 0
N w(r,ADG(r,AD, (19 and 1 is determined by mean value and standard deviation of
the binomial distributiorw(7,Al):
where
r
L/ 7\ A F\L-Al <A|>=LE, (23

T T
Working in a fixed string size representation with fixed Ta= L,E - E) (24)

instead of varyingn is more convenient because the binomial
weight prefactors are fixed during the entire simulation, andBelow (Al)—50,, the integrated weight is zero; above
can easily be calculated once at the beginning of the simula-Al)+5c,, it is 1 (up to an error of less than 10). The
tion. remaining interval rarely contains more than 50 or X0
There are several possible ways to implement the recordpoints[see Fig. 7d)]; these values can easily be stored after
ing of G(r,Al) measurements and the adjacent transformahaving been computed once for eachThusW(7,Al) can
tion to G(r,7). The easiesfand at first glance fastgsivay = be calculated very rapidly with nothing but a couple of
simply writes all recordedG(r,Al) data into a two- “cheap” elementary operations.
dimensional array with dimensiondg and LxNgB. The For very large systems and very low temperatures the
transformation taG(r,7) can then be performed once at the “relevant” Al ranges might become so large that it would be
end of the simulation. However, this method has two prob-unfavorable to store all needed(r,Al) values—for ex-
lems. A separate measurement has to be recorded each timmple, because accessing the large akidy; ,Al] would
the loop head steps up or down by one level on a world linecause too many cache misses. In this case one can store the
and whenever it traverses an interaction vertex. Recording afloefficients of some interpolation functions fov(7,Al)
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a) ettt TABLE V. Comparison of (S*(k+Q,7)5 (k+Q,0)) and
e e ™~ ™ Al (S¥(k,7)S*(k,0)) for the 16x16-site two-dimensional antiferro-
] 1 magnetic Heisenberg model A= 16 and zero magnetic field. The
GrADq = Al table shows somk values around-,).
SESEENESHIMENEMEMEBESS | 1 BN k 7 (S(k,)FHK0) 3(ST(k+Q,7)S (k+Q,0))
b) .o 0 0.16(89- 20) 0.168(2-4)
23
G(r, Al 01  0.00(0%17) 0.003(2- 3)
0.5 —0.00(36+15) —0.000(4*3)
Al 37 371 O 0.38(32-21) 0.386(C- 6)
7%
©) 0.1 0.01(74:20) 0.020(9-5)
0.5 0.00(4119) 0.000(4-4)
w(T,Al) () 0 11.3(35-17) 11.36(1-9)
0.1  10.4(0417) 10.42(3-9)
05  9.0(8%17) 9.09(3+9)
Al (27, ) 0 0.53(85- 23) 0.542(2+7)
— T
d) 4
0.1  0.06(3%20) 0.063(C- 6)
Al 05  0.00(3&17) 0.000(C-5)
2 w(t, m) - 0 0.28(92- 23) 0.287(6-5)
m=0 — T
5
0.1 0.01(08-19) 0.008(5-4)
0.5 0.00(06-17) 0.000(3-4)

FIG. 7. Transformation of Green’s function measurements from

the propagation levedl to the imaginary timer. the raw measure- . .
ments recorded during the loop update on different world-line se99an use a simple Fourier transform to obtgi(k, 7)} from

ments(a) are combined into a single functid@(r,Al) (b). For a {G_(r’T)} in O(Nsnk) Op,erat'ons(nk is the number ofk
given 7,G(r,7) could be computed by summing up &(r,Al) p_oth. _Correlat|on fun_ctlonst(k,f) can even be measured
weighted withw(r,A1)=(5)(r/8)*[1—(7/8)]* ¥ (c). Amuch  directly ink space, which also can be donedHNsn,) op-
more efficient way uses the ‘“integrated weight function” €rations. For the case<in,<Ns we have implemented a
W(r,Al)=34" w(r,m) (d) to obtain the total contribution of each Fourier transform algorithm performing much better than
range Ml,,Al,] in which G(r,Al) is constant. In the example FFT in this situatiorj21]
shown hereG(r, 7) is then simplyaA+bB+cC. Unlike a Fourier transform a Laplace transform in general
cannot be inverted. Therefore the last transition step from
instead of the function values themselves. Practical test® w is by far more complicated than the previous one from
have shown that dividing the relevant interval = to k. We use maximum entropy techniques developed
[(Al)—=50Al (Al)+50Al] into six sub-intervals with bound- within the last years and refer to earlier publicatip2]
aries <A|>_50'A| s <A|>_280'A| s <A|>_130'A| s <A|>,
<A|>+l.30'A| , <A|>+280'A| , and<A|>+50’A| , and inter-
polatingW in each subinterval by a fifth-order polynomial, is
a good compromise between evaluation spedmbut 15 el-
ementary operationsstorage requiremen(86 floating point

VII. EXAMPLE: SPIN CORRELATIONS OF THE
TWO-DIMENSIONAL HEISENBERG MODEL

In this section we use our standard benchmark model—

numbers for each) and interpolation accuracipetter than the square lattice Heisenberg antiferromagnet—to test our

2..3xX10°7). method of Green’s functions measurements for correctness
The next transformation step, Fourier transforming fromand numerical efficiency. To this purpose we calculate and

G(r) to G(k), is a well known standard method that doescompare the correlation functions

not impose any fundamental problems. However, standard

Fast Fourier transforniFFT) algorithms perform best if all (SA(7,k)S*(0K)), (25
G(k) values are to be calculated, whereas in practice one
rarely needs alk values and is interested only in okgoint (ST(7,k)ST(0K)). (26)

or in some special points of the Brillouin zone, e.g., the point

k=(m,) and its immediate neighborhood. Then one canlin the S eigenbasis, which is normally used to span the
save a lot of computation time by not recurring to FFT butmodel's Hilbert space, expressid85) is a time-dependent
using optimized algorithms designed particularly for thesecorrelation function of two diagonal operators. Therefore, the
cases. If we are interested in only one or a fewoints we  diagonal operator in Eq25) can be measured using E45)
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without introducing changes in the world lines and vertices measuring({S?S?):36.1%,
defining the current state of the system. The Green’s function
Eq. (26), however, consists of two nondiagonal operators and measuringS* S~ ):45.1%.

can only be measured with our new method of recording

general Green's functions that was described in Sec. V. FUlrrom this list and the measurement accuracies in Table V we

thermore_, at zero fielth=0 both correlation functions are cgnclude that the highly nontrivial Green’s functions mea-

related via surements lead to a slightly better accuracy than the direct

2 2 _1/at _ (S¥(r,7)S¥(r’,7')) measurements, while consuming roughly

(S(7.K)S(0K))=2(S"(7.K)S"(0K)), @7) the same amount of computer time as the latter. Measuring

so that the correctness of both estimators can be checked Bye Green’s function is thus the preferred method of deter-

directly comparing these two quantities. mining also the diagonal real space dynamical correlation

When working with the antiferromagnet we need to keepfunctions.

in mind that in order to keep the exchange matrix elements

S"S™ andS™ S positive we need to perform a gauge trans- VIll. SUMMARY

formation, multiplyingS™ andS~ on one sublattice by-1.

This gauge transformation does not affect any diagonal op- Stochasti(; ser_ies expansid|$§5, together with the
erator, but leads to a momentum shift@f (, ) and Eq. implementation tricks and Green’s functions measurements

(27) for the Green’s function and E¢27) becomes described in this paper, is a highly performing quantum
Monte Carlo simulation technique, allowing one to access
1., . both static and dynamical properties of very large systems of
(S(7,k)S(0K))= §<S (1,k+Q)S (0k+Q)). (28)  thousands of sites and at very low temperatures. Compared
to the loop algorithm, which is slightly faster on big systems
The numerical data in Table V perfectly fulfill this equality, for some specific Hamiltonians, SSE has the advantages of
and hence demonstrate the correctness of our Green's fungot suffering from exponential slowing down in external
tions measurements. fields; furthermore, SSE is more easily applicable to wide
In the simulation recorded in Table V we have calculatedclasses of Hamiltonians.
(S*S%) and (S*S™) for all allowed k points on the path

(0,0)—(m,0)—(7,7)—(0,0). Table V shows a subset of ACKNOWLEDGMENTS
these points in the vicinity ofr, 7). The three tasks “per- _ ) _ )
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